(See description below)

Click for full size.

A Rare and Massive Star

The image shows the emission nebula NGC 6164-5, a rectangular, bipolar cloud with rounded corners and a diagonal bar producing an inverted S-shaped appearance. It lies about 1,300 parsecs (4,200 light-years) away in the constellation Norma. The nebula measures about 1.3 parsecs (4.2 light-years) across, and contains gases ejected by the star HD 148937 at its heart. This star is 40 times more massive than the Sun, and at about three to four million years of age, is past the middle of its life span. Stars this massive usually live to be only about six million years old, so HD 148937 is aging fast. It will likely end its life in a violent supernova explosion.

Like other O-type stars, HD148937 is heating up its surrounding clouds of gas with ultraviolet radiation. This causes them to glow in visible light, illuminating swirls and caverns in the cloud that have  been sculpted by winds from the star. Some astronomers suggest that the cloud of material has been ejected from the star as it spins on its axis, in much the same way a rotating lawn sprinkler shoots out water as it spins. It's also possible that magnetic fields surrounding the star may play a role in creating the complex shapes clearly seen in the new Gemini image.

Astronomers are also studying several "cometary knots" out on the boundaries of the cloud that are similar to those seen in planetary nebulae such as the Eskimo Nebula (NGC 2392) and the Helix Nebula (NGC 7293). These cometary knots (so called because they seem to resemble comets with their tails pointing away from the star) are inside what appears to be a low-density cavity in the cloud. The knots may be a result of the denser, slower shells being impacted by the faster stellar wind, as observed in  planetary nebulae (formed during the deaths of much less massive stars like the Sun).

Massive stars like HD 148937 burn hydrogen to helium in a process called the CNO cycle. As a byproduct, carbon and oxygen are converted into nitrogen, so the appearance of enhanced nitrogen at the surface of the star or in the material it also blows off indicates an evolved star. According to astronomer Nolan Walborn of the Space Telescope Science Institute, who has been studying this star from the ground for several years now, it is a member of a very small class of O stars with certain peculiar spectral characteristics. "The ejected, nitrogen-rich nebulosities of HD 148937 suggest an evolved star, and a possible relationship to a class of star known as luminous blue variables," he said.

Luminous blue variables are very massive, unstable stars advanced in their evolution. Many have nitrogen-rich nebulae that are arrayed symmetrically around the stars, similar to what we see in NGC 6164-5. One of the best-known examples is the star Eta Carinae, which ejected a nebula during an outburst in the 1840s.

Click here for a wider view of the nebula.

Source